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Abstract-A plane stress solution for an anisotropic plate with a circular hole, developed by Savin,
is extended to derive the interlaminar stresses in a centrally notched composite laminate under
uniform tension. Based upon Lekhnitskii's stress potentials, theory of anisotropic elastic body and
boundary layer effect, stress shapes are chosen such that the zeroth order equilibrium equations,
interface continuity and boundary conditions are satisfied. The unknown parameters in the stress
expressions are then determined by the requirement of stress integral equilibrium. The merit of our
model is highlighted by obtaining the interlaminar stresses and the order of boundary layer stress
singularity simultaneously. Several examples of [0/90]" [±45], and [0/90/±45]. graphite/epoxy
composite laminates containing centrally circular holes are analysed.
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I. INTRODUCTION

Because of the mismatch in elastic properties between plies, the composite laminate under
in-plane loading develops serious interlaminar stresses in the boundary-layer regions close
to the free edges. When the magnitude of interlaminar stresses becomes large enough,
delamination may occur and failure may follow. It is obvious that the Classical Laminated
Plate Theory (CLPT) is not valid for interlaminar problems and thus methods for three­
dimensional stresses are required. Many investigators have made some attempts to calculate
the interlaminar stresses at straight free edges since 1970 (Pipes and Pagano, 1970). These
methods include finite difference by Pipes and Pagano (1970), finite element by Rybicki and
Schmueser (1976), Wang and Crossman (1977), Spilker and Chou (1980), and eigenfunction
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expansions by Wang and Choi (l982a, b). But, only a limited number of papers have been
proposed for interlaminar stresses at curved edges in composite laminates (Rybicki and
Schmueser, 1976; Tang, 1977; Ye and Yang, 1988; Zhang and Ueng, 1988; Lucking et at.,
1984; Carlsson, 1983; Ericson etat., 1984). From a literature survey, we find that finite
element and finite difference methods require a large amount of computer storage and
computer time. The eigenfunction method involves a complicated and tedious eigenvalue
problem solution. Hence, the drawbacks make these methods restricted to deal with inter­
laminar stresses around the free edge of a circular hole in a composite laminate.

Generally speaking, the published papers may be categorized into (a) computing the
interlaminar stresses at straight free edges, (b) obtaining interlaminar stresses at curve
edges, and (c) obtaining the singularity order at straight free edges and interlaminar stresses
as well. To the best of our knowledge, very little research work has been reported to yield
singularity and interlaminar stresses simultaneously until now. The present solution method,
based on Lekhnitskii's stress potentials, theory of anisotropic elastic body, boundary layer
effect and stress integral equilibrium, attempts to give a more accurate approximation to
the three-dimensional stresses in a notched composite laminate. This method also has the
ability to analyse the order of singularity of boundary-layer stress. Thus, the proposed
method herein has the advantage of being able to solve the interlaminar stresses between
any two plies and for all directions. It is also an efficient technique for the designer to avoid
delamination for the pronely delaminated composites.

2. FORMULAnON

First, a cylindrical coordinate system for the notched laminate, i.e. r, e, z, is introduced
as shown in Fig. 1. A uniform tensile stress (To is applied at both ends. The laminate is
composed of 2m plies, with a thickness of h. It has a centrally circular hole of radius R.
The origin of the coordinate system is located at the center of the hole on the midplane,
while the z-axis is perpendicular to the plane of laminate.

Next, the dimensionless variables are defined as follows:

r-R
P=-h-'

z
0"0

00

90°
90°
0°

r

0"0

Fig. 1. The geometry of a centrally notched laminate.



Interlaminar stresses in composite laminates

h
1J = ii"

If the body forces are neglected, the equilibrium equations (Reiss, 1961), are

O"Z,~ + [O'rr,p + 1:pt5 (0',8,8 +O'rr - 0'88) ] :::: 0,
O'zO,~ + [O'rO,P + I:po (0'00,0 +0',0) ] = 0,
O'zz,~ + [O"Z'P + I:p1J (O'zO,O +O',z) ] :::: O.
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(1)

By means of asymptotic expansions, the boundary layer stresses may be expressed in
a power series of 1J, that is

(2)

where a" are denoted as the boundary-layer stress coefficients, 1J is very small near the free
edge and on becomes much smaller for n > O. Substituting eqn (2) into eqn (I) and neglecting
the higher order terms of 1J (Tang, 1977), yields the zeroth order equilibrium equations

o 0 0
O',z.~ +O'rr.p = ,

o 0 0
O'oz,~+O',o,p= ,

(3)

These boundary layer equations are the same as those adopted by Pipes and Pagano (1970).
It is assumed that for each stress, except 0'00, the dependence on rand z can be

functionally separated (Kassapoglou and Lagace, 1986). These stresses in the kth ply of a
2m-ply laminate can thus be presented as:

0'2l
k

) :::: J17)(p)QW('7) kl = rr, rO, rz, Oz, zz.

Substituting eqn (4) into eqn (3), we have

(4)

OQ(k)
Q(k) =_'_Z

rr 0'7'

::lp(k)
p:'k) = _ _u _'_'

'z op ,

OQ(k)
Q(k) =_Z_Z

'z 0'7'

p(k) = _ op<,~)
zz op ,

D<k) = _ op<,~)
.I.8z op . (5)

It is obvious from eqn (5) that only four stress functions, i.e. Q~~), Q~), p~~) and p~~)

must be assumed as stress functions of P17) and QW, and the remaining six stress functions
Q~~), Qb~), Q~~), p<,~), J1~) and P~~) can then be determined.

Considering the QW function first, we find that the in-plane stresses O'~~), O'~~) are
constant in a given ply. This implies that both stresses do not vary along the z-axis in a
certain ply and the simplest forms for Q~~)('7) and Q~Z)('7) can be specified as:
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Q~~)('1) = 1,

Q~Z)('1) = 1.

From eqn (5) the remaining three functions can be obtained:

Q~~)('1) = '1+B-t),

Q~~)('1) = ~'72+B\k)'1+B~),

Q~~)('1) = '1 + B~k),

(6)

(7)

where B\k), ~k) and Mk
) are constants to be determined by interface continuity. Equations

(6) and (7) are the basic expressions for Q.W('1) functions.
To consider singularity behavior, J11)(p) are chosen to be a combination of power

functions in p. A shape for P~~)(p) is assumed by Jen (1992) as,

(8)

where A\k), A~), A<j') and A, a are unknown constants to be determined. The adoption of
the form in eqn (8) is motivated by the stress variation and boundary conditions of (Jrr

around the hole edge reported by Savin (1968). The constants A~k) are involved in the
boundary conditions of boundary layer stress. A, a are dimensionless and can be calculated
from stress integral equilibrium equations. Similarly, the pW(p) function can also be
assumed as

(9)

Then the remaining pW(p) functions can be derived from eqn (5) as

r.~)(p) = A\k)a(a -l)p·- 2 +A~) (Aa-l)Aapl.- 2 +A<j')a 2A2 e-·lp ,

p~~)(p) = - A\k)ap·-l - A~)Aapl.-l +A<j') Aa e-·lp ,

p~~)(p) = - A~k)(a -l)p·- 2 + A~)a e-·p • (10)

3. STRESS ANALYSIS

Suppose that each ply has the same in-plane stresses in the entire laminate except for
the area around the hole edge extending to a small distance. In this small region, different
plies possess varied high stresses because of the free boundary effect and significant inter­
laminar stresses existing in this region. The determination of stress field in a composite
laminate with a hole under in-plane loading can be divided into two parts. One is the in­
plane stress dominating field predicted by plane stress solution, another is the boundary
layer stress field in the boundary layer region. Since interlaminar stresses will arise in any
medium with layers of varying elastic constants if an in-plane gradient exists in the stress
field, it is known to us that a significant in-plane gradient occurs in the boundary layer
region according to many reports (Rybicki and Schmueser, 1976; Wang and Crossman,
1977; Spilker and Chou, 1980; Wang and Choi, 1982a, b; Tang, 1977). Hence, it is
reasonable to assume that interlaminar stresses exist in this region. In the case of an
anisotropic plate with a circular hole subjected to a uniform tensile load (J 0 along one of
the principal material directions, the compatibility equation may be expressed (Lekhnitskii,
1963) as

where F is the Airy stress function (Timoshenko and Goodier, 1951), bij are the elements
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of the flexibility matrix, referring to Appendix A. However, eqn (11) can be decomposed
into four 'differential operators of the first order, and then it has the form

(12)

where

a a
Dk = - + Ilk - and Ilkoy AX

are the roots of the corresponding algebraic equation

(13)

Lekhnitskii (1968) proved that the numbers of Ilk are always complex or purely
imaginary. Two of these numbers are conjugates of the remaining two. These parameters
are denoted as

where ell' el2, PI and P2 are real constants.
The plane stress expressions can be written in terms of the two stress functions <!> 1(z 1)

and <!>2(Z2) (Savin, 1968; Lekhnitskii, 1963), as

where

O"~ = 0"0+2 Re [llr<!>'I(ZI)+Il~<!>;(Z2)],

O"~ = 2 Re [<!>'I(Zt) +<!>;(Z2)],

u~y = -2 Re [lll<!>'I(ZI)+1l2<!>;(Z2)],

-0"0R2(i+lll)
<!>1(ZI) = 2(IlI-1l2){ZI +[zr- R2 (1 +IlDl I/ 2}'

uoR 2(i+1l2)
<!>2(Z2) = 2(lll - 1l2){Z2 + [z~ - R2(I + Il~W/2} ,

(14)

ZI = X+IlIY, Z2 = X+1l2Y, and R is the radius of the circular hole.
In eqn (14) the superscripts p represent the plane stresses associated with the laminate.

The stresses at each individual layer may be found from the following constitutive equations
for each layer:

(15)

where {un k represent the plane stresses in the kth layer, and k is the layer number. Sij
illustrate the terms of reduced stiffness. For the entire laminate, the strain field can be
calculated from the stress-strain relationship.

3.1. Determination ofPkl
The boundary conditions for the boundary region in the kth ply are:

at r = R,

at r = R+nh, .....O(k) _ ..... ()p(k)
Vr6 - vrO , (16)

where nh is the distance of the boundary layer from the hole edge, and it is dependent on
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many factors. For a specific lamination and loading condition, it depends primarily on the
geometric ratio, i.e. R/h. Generally speaking, the thicker the laminate is, the larger the
boundary layer width will become. For the laminates studied here, 0 < n < 2 is large enough
to encompass all possibilities. Some reports reveal the same results (Tang, 1977; Lucking
et al., 1984). In eqn (16) a~ are the plane stresses at the hole edge and aj~P are the plane
stresses at a distance of nh from the hole edge obtained by eqn (15). The proper choice of
n will be discussed in the next section. Substituting the boundary conditions of eqn (16)
into eqns (8) and (9), we obtain the constants A~k) :

Thus PN(p) can be computed by substitution of A~k) to A~) into eqns (8)-(10); they are

O'0p(k) [(r-R"(a (r-R)aJ ((r-R))
p<,~) = 1r~A ~) -A ~ +O'f;k) exp -IXA -h- ,

(r-R'r-I ((r-R))P<~) = a~(k) ~) + O'f~k) exp -IX -h- ,

AlXaOp(k) [(r_R"(a-l (r-R,\-IJ ((r-R))
p<,~) = - nO:' A) ~) - ~) +afjk)IXA exp -IXA. -h- ,

nlk) __ (1X-1)a~tl"k)(r-R,\-2 (k) (_ (r-R))
qz· - n nh) +ar6 IX exp IX h '

Pz~) = n:(~q!A) [(AIX-l) (r~hRr-2- (IX-I) (r~RJ-2J +af;k)1X2A.2exp ( -IXA. (r~R)).
(17)

3.2. Determination of Qk/

The functions QW are determin6d from the stress continuity condition at ply interfaces.
Consider the interface between ply.k and ply k + 1, the following stress continuity conditions
are imposed:

(18)

where Z(k) is measured locally from the bottom of the corresponding ply. Tk + I is the
thickness of the corresponding ply. Starting from the bottom surface of the laminate and
proceeding up the midplane, we find that the constants Ii;k) are dependent on the values of
B j of all plies below that particular kth ply.

The continuity conditions for arz are

{
_AlXqOp(m) [(r_R"(a-l (r-R,\-l] ((r-R))}

0= n(l~rA) ~) -~) +qf;m)lXA.exp -IXA. -h- {O+B\m)},

{ -AlXa~,."(m) [(r-Rt-l _(r-R,\-l] p(m), (_ , (r-R))} {Tm B(m)}
n(l-A) nh ) nh} +arr IXII. exp IXI\, h h + 1

{
A!XaOp(m-l) [(r R)""-l (r R\a-l] ((r R))}= - n(1=-A) ~h - ~h} +a~m-I)IXAexp -IXA ~ {0+H-i-

1
)},
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{
-AIXO':r(k+1) [(r-R).la-I _(r-R)~-IJ p(k+I) •• l (_ 1 (r-R))} {Tk + 1 nik+l)}

n(l-A) nh nh +O'rr WI. exp IX", h h +D)

{
-AIXO'OP(k) [(r_R)l~-l (r-R)~-lJ ((r-R))}

= n(l-'~) ~ - --,;r;- +O'~?)IXA exp -IXA -h- {O+B\k)}.

From the above calculations we obtain

B(k) __1_ ~ Op(j) ~
I - Op(k) L., O'rr h'

0'" J=k+ I

Similarly, the continuity conditions for O'zz are:

(19)

We have

B(k) = _1_ { ~ ~ (~)2 O'0p(j) + ~ ~ O'0p(j) J~l T i } (20)
2 Op(k) L., 2 h rr L. h rr L., h '

0'rr j=k+ J j~k+ I i~k+ 1

where

Then, the continuity conditions for O'oz

{
- (IX-l)O'~f(m) (r-R)~-2 ((r-R))} {Tm }x -- +O'pJm) IX exp -IX -- - +B~m)

n nh' h h

SAS 30:21-0



2918 M.-H. R. JEN et al.

{-(CX-l)O'?J'(k) (r_R)a-2 ((r-R))}
= -- n r --,;[I +O'rJk)cx exp -CX -h- {O+B~)}.

It yields

(k) 1 Lm O(·)1jB ---- O"PJ-3 - Op(k} rO h'O'rO j=k+ 1

(21)

Thus QW(/7) can be obtained by the substitution of eqns (19)-(21) into eqn (7), after
arrangement they are

Q(k} _ :. _1_ ~ Op(j} 1j
rz - h + Op(k) L... 0'" h'(1" j=k+1
(k) Z 1 ~ Op() 1j

Q{Jz = -h + Op(k} L... (1r9 J -h '
0',8 j=k+ I

(k) _ 1(Z)2 [1 ~ Op(j) 1jJ (z)
Qzz - 2 h + O'~:,(k} j=t. 1 0'" h h

{ I [ m 1(T)2 m T )-1 TJ}+ -- L --l O'op(j} + L --lO'0P(j} L ~
O'~(k} j=k+ 1 2 h " j=k+ 1 h " i=k+ 1 h .

The stresses in the kth ply can then be obtained by the functions Pk7} and QW :

O(k} O'r;;'(k} [(r - R)Aa , (r - R)aJ p(k) ( , (r - R))
(1" = 1=1 --,;[I -II. --,;[I +0'" exp -IIII. -h- ,

(r-R,\-I ((r-R))(1~Jk) = (1~J'(k) --,;[I) +O'rJk}exp - cx -h- ,

(10(k) = { -ACX [(r_R~a-l _ (r-R'\'·lJ +O'p(k}CXA exp (_CXA(r-R))}
rz n(l- A) nh) nh )" h

(22)

{ ACX [ (r_R)Aa-2 (r-R)a-2J ((r-R))}(1~;k) = n2{1_ A) (AlI-I) ~ - (cx 1) ~ +(1rr(k}cx2A2 exp -CXA -h-

{
I (Z)2 [ m J(z) m 1 m )- 1 }x- (j~,?(k) - + L (1~,?(j}t) -- + L - tl(1~r(j}+ L tp~r(j} L ti . (23)
2 h j=k+ 1 h )=k+ 1 2 )=k+ 1 i=k+ I
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Finally, stress function aW may be calculated from the strain-displacement and stress­
strain relationships, that is

ark) = _ (S aO(k) +S aO(k) - S aO(k»/S!iff 12rr 13zz 16r8 11' (24)

3.3. Determination of (I. and A
In order to evaluate the parameters of (I. and A, two equations are required; the force

resultants of both the exact plane stress and approximate three-dimensional solution in the
boundary layer region must be equal, since both in-plane stress resultants must be in
equilibrium with the corresponding resultant of the applied loading, thus

f P d -!If O(k) d darr r - h arr r z,

fa~9 dr = ~ffa~Jk) dr dz.

(25)

(26)

Then, the parameters of IX and A can be estimated by solving eqns (25) and (26)
separately. The detailed procedure is given in Appendix B. Because the singular pheno­
menon of interlaminar stresses has been observed around the hole edge, the proper value
of n which we previously used as the boundary layer range is selected such that the values
of (I. and ,1.(1. satisfy the two inequalities:

1 < IX < 2,

1 < AIX.

(27)

(28)

According to the above-mentioned analysis, we find that these out-of-plane stresses
can be calculated from eqn (23). Therefore, this method of solution is very simple and the
boundary-layer stress singularities in composite laminates with centrally circular holes are
definitely evaluated.

4. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results of three examples in graphite/epoxy laminates are due to the fol­
lowing elastic constants, ply thickness and hole radius:

Ell = 145 GPa, VI2 = 0.31,

En = 10.7 GPa, V23 = 0.35,

G l2 = G13 = 4.5 GPa, h = 4mm, R = 8 mm.

First, for a [0/90]s cross-ply laminate, six values of angle 0, namely, 15°,30°,45°,60°,
75°,85° are used, and the ratio of (r-R)/h is assumed from 0.01 to n, not from 0 to n in
order to avoid the singular properties of a zz and a9z at r = R. The predicted in-plane
normalized average stresses which compared with anisotropic elasticity solution by Savin
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0.4 Iii II II a
Iii Iii
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0
Z -0.4

8
0• 0

0-0.6 • 0 0• • • a 0

-0.8 .
0 1 2 3 4

(r-R)/h

Fig. 2. Variation of in-plane stresses (J" and (J,o as a function of (r-R)lh at () = 30°.

(1968) are shown in Fig. 2 at e= 30° for example. The present solutions are found to be
in very good agreement with Savin's solution for various angles along the hole edge. In the
sequel figures of the in-plane stresses are all normalized.

Figure 3 shows arr/ao and are/ao around the hole at a distance of one eighth of the
radius from the edge, arr/ao compared well with Savin (1968) and are/ao is slightly different
from that by Savin (1968). Figure 4 illustrates the results in very good agreement with those
by Savin for are and arr around the hole at a distance of half the radius from the hole edge.
In comparison with the numerical predictions of Figs 3 and 4, we obviously observe that
at a distance far away from the hole edge, both the results of our method and Savin's are
becoming close to each other for in-plane stresses. However, it should be noted that for a
three-dimensional solution in an area, very close to the hole edge, the in-plane stresses are
not expected to agree very well with the two-dimensional solution by Savin (1968), since
the singularity affects the interlaminar stresses significantly.

Figure 5 represents the distributions of interlaminar stresses azz and aez around the
hole. aez/ao has a very similar shape of stress behavior to that of Zhang and Ueng (1988),
especially for e= 25--45° at a distance of (r - R)/h = 0.01 from the hole edge, and also very
close to these values by Zhang and Ueng (1988) for the specific angle and distance. The
obtained peak value of (lez/ao is 0.75, while that of Zhang and Ueng (1988) is 0.8. Similarly,

0.4

• I!!I0.2
a

" £1
~ £1

III:.; 0.0- £1 Savin an/an • i
~ present ar/an

e
-c •:.; • Savin are/an 8.~ •-; -0.2 0 present a,-e/an 0
E •
~ 0
Z

-0.4
0

-0.6
0 20 40 60 80 100

6 (degrees)

Fig. 3. Variation of in-plane stresses (J" and (Jri! around the hole at r-R = R18.
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:;; -0.2
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-0.6 0

•
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40 50

o
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.

70

III Savin ur/uo
• present U r/U 0

• Savin ura/uo
o present ura/uo

• •
o

o

80 90
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Fig. 4. Variation of in-plane stresses u" and Uri! around the hole at r-R = R/2.

the presented and referred curves of uzz/uo are close to each other too, in addition the peak
value we obtained is 0.24 while that of Zhang and Ueng (1988) is 0.2.

It is now well known that the rapidly varying interlaminar stresses are found near the
free edge of a laminated composite. Based on eqns (26) and (27), the order of singularity
can be solved in our model. For illustration, the singularity for the free edge of a [0/90].
graphite/epoxy laminate around a quarter circular hole is shown in Fig. 6. The values of
singularity must be positive, since the inequality relations in eqn (28) need to be satisfied.
The order of singularity provides us with the important information to predict the initiation
of delamination.

The overall distribution of UBz compares well with the curve by Zhang and Ueng (1988)
except for a small range of angles over 70° where UBz is small but negative. This weakness
can be improved by a slight modification of selecting more suitable functions.

Additionally, Figs 7-9 provide more evidence that the interlaminar stresses are very
close to those by Zhang and Ueng (1988) at the specific angle () = 81° and ratio R/h = 100.
Figure 7 presents the profile ofinterlaminar normal stress uzz/uo. We find that both curves
fit well for (r-R)/2h larger than 0.5. Figure 8 depicts the interlaminar shear stress UBz/UO'

These values possess a singularity near the hole edge, and diminish quickly at a distance of

1.0...----------------------,

0.8

on

~ 0.6
E;
'""8 0.4
.~

:;;
E
~ 0.2
i

0.0

til presentue/uo
a Zhang and Ueng uo/uo
• present O"zz/O"o
o Zhang and Ueng uzz/uo

...... ~-.,

-0.2 +--.--.--...-...,...---.,.......-.-.......---.--r--......--r-~-.- .......___I

o 20 40 60 80 100
e (degrees)

Fig. 5. Variation ofinterlaminar stresses around the hole edge at (r-R)/h = 0.01.
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1008020
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o 40 60
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Fig. fJ. Singularity of a [0/90]. graphite/epoxy laminate around a quarter circular hole.

about one ply thickness. Although our results are always lower than those by Zhang and
Ueng (1988), they agree very well with each other. The distribution of interlaminar shear
stress urzjuo is described in Fig. 9, the general trend agrees very well and the results are
quite close to each other.

Figures 10-12 are the predictions plotted for [±45]s laminates compared to Tang
(1977) with the following material properties:

Ell = 137 GPa, E 22 = E 33 = 14.4 GPa,

G12 = G13 = G23 = 5.85 GPa,

V12 = Vl3 = V23 = 0.21, h = 4mm, R = 400mm.

Figure 10 presents the interlaminar shear stress uozjuo from the hole edge at (J = 0°
with Rjh = 100. The stress increases rapidly toward the hole edge because of singular effect,
but it is close to zero and becomes smooth for (r- R)j2h > 0.5. Interlaminar normal stress

0' zz

0'0
0.2 r-------------------,

III Zhang and Ueng
• present

1.21.0
-0.1 L.-.a..-.a..-L-.'--'--..............l...-L-'--........................................--a---'

0.0 0.4 0.6 0.8
(r-R )/2h

Fig. 7. Distribution of un/uo for [0/90]. laminate under uniaxial tension at 8 = 81° for ratio
R/h = 100.
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0.4
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•!:!
-; 0.2e...
0
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0.1

0.0
0.0 0.2
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Uzz/Uo is illustrated in Fig. 11 for the same angle and ratio. The general trend follows well,
especially in the regions near and far from the hole edge. The only difference is that the
minimum value in the central portion is negative and higher than that by Tang (1977), but
actually it does not have much effect on delamination. Figure 12 shows the interlaminar
shear stress urz/uo from the hole edge at () = 0°, they compare very well except at the hole
edge. However, the value of Urz is generally much smaller than other interlaminar stresses,
so it does not have much effect from a practical point of view.

Finally, Fig. 13 summarizes the interlaminar stresses around the circular hole in the
[0/90/ ±45]. laminate at the midplane. We use the same material properties as those in the
[0/90]. laminate with the ratio ofthickness to radius equal to 1/10. Without repetition of
plotting the stress profiles as shown in [0/90]. and [±45]. for specific conditions, it is seen
that the interlaminar shear stress Uez is the dominating component and has the maximum
value at about 50° from the loading direction. The other two components of interlaminar

III Zhang and Ueng
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-8- __ . 8

0.4 0.6

(r-R)/2h

0.8 1.0 1.2

Fig. 9. Distribution of u,,/u0 for [0/90]. laminate under uniaxial tension at (J = 81 0 for ratio
R/h = 100.
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Fig. 10. Distribution of (10,/(10 for [±45j, laminate under uniaxial tension at () = 00 for ratio
R/h = 100.

stresses azz and aez are comparatively small. The computing time of each case on a CDC
system is listed in Table I for reference. We find that the CPU time is less than half a minute
even for the thickness of 48 plies. Hence, our approach is verified to be a simple and efficient
one.

5. CONCLUSIONS

In order to obtain reasonably accurate approximate interlaminar stresses in a com­
posite laminate with a centrally circular hole, the method of analysis is proposed herein
using matched asymptotic expansions by Tang (1977). The solution is derived and obtained
by the combination of interior in-plane stress and boundary layer stress fields. A computer
code in FORTRAN incorporating the present method is adopted to conduct the various
manipulations of mathematical operations in a CDC computer system. The merits of the
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Fig. II. Distribution of (1,,/(10 for [±45j, laminate under uniaxial tension at () = 00 for ratio
Rfh = 100.
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Fig. 12. Distribution of rJ,,/rJo for [±45j, laminate under uniaxial tension at 9 = 0° for ratio
R/h = 100.

proposed method are simple and efficient. The analytical predictions, including the value
of singularity, are in good agreement with those stated in the literature. From our work the
following concluding remarks would be pertinent:

(I) The interlaminar stresses in centrally notched composite laminates are obtained ;
(2) Their respectively singularities come simultaneously;
(3) The proposed method is simple and suitable for engineering applications, especially

in the preliminary design stage.
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Fig. 13. Variation of interlaminar stresses around the hole in [0/90/ ±45]. laminate at midplane.
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Table I. Computer execution time for various laminates

Laminate

[±45),
[±45h,
[±45)4'
[±45ls,
[±45h.,
[0/90),
[0/90h,
[0/90)4,
[0/90)8,
[0/90],4,

R/h

100
50
25
12.5
4.2

100
50
25
12.5
4.2

CPU (seconds)

1.5
2.01
3.25
6.05

25.5
1.5
2.0
3.2
6.0

25.0
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APPENDIX A

The plane stress constitutive equation

where
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Q.. = C-.- Cj)Cj3
I) IJ C

33
·

For a material having transverse isotropy relative to the X2-X3 plane, we find

C' (1 2 ) Ell,,= -V23 V'

where

Stiffness transformation equations for an orthotropic C' matrix:

CII = C'II m 4+ 2(C"2 + 2C~6)m2n2 + C;2n\

Cn = (C'" +C;2 -4C~6)m2n2+C'n(m4+n4),

C I3 = C"3m2 + C ;3n2,

C'6 = [C'llm2-C;2n2_(C"2+2C~6)(m2-n2»)mn,

C 22 = C'1,n4+2(C"2+2C~6)m2n2+C;2m\

C2l = C"ln2+C;3m2,

C 26 = [C'lIn2-C;2m2+(C'n+2C~6)(m2-n2»)mn,

C33 = C 33 ,

Cl6 = (C;3- C'I3)mn,

C44 = C~4m2+C5sn2,

C4S = (C~4-C5s)mn,

C ss = C~4n2+C5sm2,

C66 = (C'1I +C;2 - 2C'n)m2n2+C~6(m2 - n2) 2, ,
C14 = CIS = C24 = C 2S = C 34 = C 3S = C46 = C S6 = 0,

where m = cos (), n = sin ().
Note that the transformed matrix [C), is no longer orthotropic. The elements of the stiffness matrix

_ 1 fh
l
2 (k) _ (k) Tk

a'l - h- Qil dz - LQil -h' iJ = 1,2,6.
-h12

The elements of the flexibility matrix

APPENDIX B
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(1" = (1yy cos 2 (}+(1xx sin 2 (}+2(1xy sin (}cos (),

(1rlJ = «(1xx-(1yy) sin () cos (}+(1Xy(cos 2 (}-sin 2
()),

:. (1f, = {(10+2 Re [JlftPj(ZI)+Jl~tP;(Z2)]} sin2 (}+{2 Re [tPj (z,) +tP;(Z2)]} cos2
()

+2{ -2 Re [Jl,tPl(z,)+Jl2tP;(z2)]} sin (}cos 9,

(1ro = {(10 + 2 Re [(Jlf -1)tPl (z ,)+ (Jl~ -1)tP;(z2)]} sin () cos ()+ {-2 Re [Jl, tP',(z ,)+ Jl2 tP; (Z2)]} (cos 2 9-sin2 (J),

where
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z,=x+Jl,y=r(sinO+JliCOSO), 1,2,

4>;(Zj) = 4>;(r) dr = 4>;(r)!(sin O+Jlj cos 0), j 1,2,


